On-site measurements of Power and Power Quality

Paul Wright, Paul Clarkson, Pravin Patel, Adrian Wheaton, Brian Tait. paul.wright@npl.co.uk

Target Sites

- 1) Government Agency building with renewables Agency abolished by government
- 2) Smart Grid Trial in LiverpoolDelays in funding delays in project
- 3) NPL Local sub-station
 - 7 day test completed
- 4) Trial in sub-station owned by UK DNO
 - 1 day test completed
- 5) High penetration PV network owned by same UK DNO Scheduled April 2011

Voltage Transducers

- LV measurements 415/230V 3 Phase
- Retro-fitted ranging amplifier (one for each channel)
- Relay selected ranges: 440,220,110,63.5,20,10,1V

Current Transducers

Rogowski 1 of 3 Protection Box

Current Channels with retro-fitted integrators

- 10A, 100A, 1KA, 10kA ranges on retro card
- Split core rigid Rogowski Coils from Rocoil Ltd.

Uncertainties

Rogowski Coils + Integrators at 50Hz

Contribution	Uncertainty	
	ppm	
Calibration Uncertainty	53	
Repeatability	50	
Temperature	289	
Linearity	50 130	
Rotational effects		
End Effects	150	
Positional Sensitivity	289	
Cross phase interaction	60	
Total at 50Hz (k=1)	463	
Phase (µRad)	70	

Voltage Ranging Amplifiers at 50Hz

Calibration Uncertainty	10
Repeatability	10
Temperature	50
Linearity	2
Total at 50Hz (k=1)	52
Phase (µRad)	23

Safety Codes

Safety requirements for electrical equipment for measurement, control, and laboratory use

Part 1: General requirements

Protection

Improved PCB Clearances

Improved Insulation

EMC Testing

AC mains

supply

EMC Radiated Emissions – GTEM Cell

Software & Data Processing

9.2M samples per minute – capture of samples with post processing is not practical !

Real Time PQ processing is essential

Name	Size	Modified
SiFlickerCh2 MeasurementLog 20110224 114037 Part 2.csv	8,371	24/02/2011 18:56:30
SiFlickerCh2 MeasurementLog 20110224 114037 Part 3.csv	8,734	24/02/2011 22:33:42
SplickerCh2 MeasurementLog 20110224 114037 Part 4.csv	8,448	25/02/2011 02:11:14
FlickerCh2 MeasurementLog 20110224 114037 Part 5.csv	8,092	25/02/2011 05:48:52
FlickerCh2 MeasurementLog 20110224 114037 Part 6.csv	8,343	25/02/2011 09:20:24
SiFlickerCh2 MeasurementLog 20110224 114037 Part 7.csv	791	25/02/2011 05:48:56
SFTAmplitudesCh0 MeasurementLog 20110224 114037 Part 1.csv	54,973,883	24/02/2011 15:18:52
SFTAmplitudesCh1 MeasurementLog 20110224 114037 Part 5.csv	55,174,690	25/02/2011 05:48:52
SFTAmplitudesCh1 MeasurementLog 20110224 114037 Part 6.csv	55,029,375	25/02/2011 09:25:20
SFTAmplitudesCh1 MeasurementLog 20110224 114037 Part 7.csv	594	25/02/2011 05:48:52
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 1.csv	55,101,120	24/02/2011 15:18:52
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 2.csv	55,154,282	24/02/2011 18:56:30
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 3.csv	55,140,473	24/02/2011 22:33:42
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 4.csv	55,132,741	25/02/2011 02:11:14
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 5.csv	55,117,483	25/02/2011 05:48:52
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 6.csv	54,760,097	25/02/2011 09:24:42
SFTAmplitudesCh2 MeasurementLog 20110224 114037 Part 7.csv	594	25/02/2011 05:48:52
FTAmplitudesCh3 MeasurementLog 20110224 114037 Part 1.csv	55,431,062	24/02/2011 15:18:52
SFTAmplitudesCh3 MeasurementLog 20110224 114037 Part 2.csv	55,282,483	24/02/2011 18:56:30
SFTAmplitudesCh3 MeasurementLog 20110224 114037 Part 3.csv	55,214,217	24/02/2011 22:33:42
SFTAmplitudesCh3 MeasurementLog 20110224 114037 Part 4.csv	55,380,777	25/02/2011 02:11:14
SFTAmplitudesCh3 MeasurementLog 20110224 114037 Part 5.csv	55,357,944	25/02/2011 05:48:52
FTAmplitudesCh3 MeasurementLog 20110224 114037 Part 6.csv	54,801,835	25/02/2011 09:24:08
SFTAmplitudesCh3 MeasurementLog 20110224 114037 Part 7.csv	600	25/02/2011 05:48:54
FTAmplitudesCh4 MeasurementLog 20110224 114037 Part 1.csv	55,736,353	24/02/2011 15:18:52

Results in various log files split into parts – still gives lots of data.

Result visualization and interpretation is a major task.

Remote Data Communications

Logistics

Site Testing Equipment Check List

Primary Equipment Digitizer 24V Power Supply IDC mains lead Current Fuse Box Voltage Fuse Box Current Extension leads (x3) + couplers

Rogowski Coils (x3) large heat shrink for Rog Coils padding

PC Mouse Monitor keyboard IDC mains leads (x2) 5m screen crossover Bthemet cable Spares HRC Fuses 24∨ Power Supply

spare fuse for 24V PSU IDC mains lead cross over Ethernet cable

Fibre optic cable

Digitizer unit

G SM Modern, P SU and aerial Reset Relay fibre transmitter box Fibre optic cable

4-way extension board (2 off) blue single phase round 240∨plug

Temperature monitor, probes and PSU pointer to reset temperature monitor

Trolley

02 Hi Speed IP Dongle

Substation #1

Substation #2

Problems with Rogowski Coil Sizing

<u>Sub#1</u> -Coil too small for main busbar - coils used on feeders instead

<u>Sub#2</u> - Coil too big – can't get 3 on safely

Current Harmonic Results

Blue Current Harmonics

Voltage Harmonic Results

Power Measurements

Blue Phase Power

Flicker Sub#1

22/02/11 - Flicker, Red Phase

Next Measurement - PV Trial Site

- A site with high PV penetration.
- More on line in next few months.
- 2 weeks of measurements 04/11
- DNO interested in:
 - Under/over voltage
 - dips/swells, flicker
 - inverter switching harmonics at about 3kHz

Power Quality – Field Measurements

- Smart Grid Trials before and after studies.
- Flicker effects of Wind Turbines, verifying IEC Fictitious grid technique.
- Rail distribution grid PQ measurements.
- High voltage transmission measurements for TSOs.
- HVDC Links

Conclusions – Lessons Learned

- Huge underestimation of the time and effort taken to prepare for a site visit. It might seem trivial is isn't!
- Does your equipment meet EN61010 Part III insulation, protection etc.
- Do an early site survey if possible to get an idea of busbar sizes and voltage connections not always easy!
- Have a variety of Rogowski coils of different sizes
- Talk to network operator understand working codes and practices, paperwork and safety requirements.
- Think about the requirements of processing the huge amounts of data.
- Expect the unexpected.

